\(\int \frac {\sqrt {a+b \cos (c+d x)} (A+C \cos ^2(c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\) [730]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 37, antiderivative size = 394 \[ \int \frac {\sqrt {a+b \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 A (a-b) b \sqrt {a+b} \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^2 d}-\frac {2 \sqrt {a+b} (A b-a (A+3 C)) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a d}-\frac {2 \sqrt {a+b} C \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{d}+\frac {2 A \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)} \]

[Out]

2/3*A*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(3/2)+2/3*A*(a-b)*b*cot(d*x+c)*EllipticE((a+b*cos(d*x+c))
^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec
(d*x+c))/(a-b))^(1/2)/a^2/d-2/3*(A*b-a*(A+3*C))*cot(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*
x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/d
-2*C*cot(d*x+c)*EllipticPi((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(a+b)/b,((-a-b)/(a-b))^(1/2))*(
a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/d

Rubi [A] (verified)

Time = 0.86 (sec) , antiderivative size = 394, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.162, Rules used = {3127, 3132, 2888, 3077, 2895, 3073} \[ \int \frac {\sqrt {a+b \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 A b (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{3 a^2 d}-\frac {2 \sqrt {a+b} (A b-a (A+3 C)) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{3 a d}+\frac {2 A \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d \cos ^{\frac {3}{2}}(c+d x)}-\frac {2 C \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d} \]

[In]

Int[(Sqrt[a + b*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2))/Cos[c + d*x]^(5/2),x]

[Out]

(2*A*(a - b)*b*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*
x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(3*a^2*d
) - (2*Sqrt[a + b]*(A*b - a*(A + 3*C))*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqr
t[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b
)])/(3*a*d) - (2*Sqrt[a + b]*C*Cot[c + d*x]*EllipticPi[(a + b)/b, ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]
*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a
 - b)])/d + (2*A*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2))

Rule 2888

Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[2*b*(Tan
[e + f*x]/(d*f))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*El
lipticPi[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)],
 x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] && PosQ[(c + d)/b]

Rule 2895

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(
Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqrt[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]
*EllipticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2]], -(a + b)/(a - b)], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 3073

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A*(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e +
 f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e +
 f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ
[A, B] && PosQ[(c + d)/b]

Rule 3077

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rule 3127

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Si
n[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^
(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(b*d*m + a*c*(n + 1)) + c*C*(b*c*m + a*d*(n + 1)) - (A*d*(a*d*(n
 + 2) - b*c*(n + 1)) - C*(b*c*d*(n + 1) - a*(c^2 + d^2*(n + 1))))*Sin[e + f*x] - b*(A*d^2*(m + n + 2) + C*(c^2
*(m + 1) + d^2*(n + 1)))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C}, x] && NeQ[b*c - a*d, 0]
 && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && LtQ[n, -1]

Rule 3132

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(((a_.) + (b_.)*sin[(e_.) + (f_.
)*(x_)])^(3/2)*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[C/b^2, Int[Sqrt[a + b*Sin[e + f
*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] + Dist[1/b^2, Int[(A*b^2 - a^2*C + b*(b*B - 2*a*C)*Sin[e + f*x])/((a + b
*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a
*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {2 A \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2}{3} \int \frac {\frac {A b}{2}+\frac {1}{2} a (A+3 C) \cos (c+d x)+\frac {3}{2} b C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx \\ & = \frac {2 A \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2}{3} \int \frac {\frac {A b}{2}+\frac {1}{2} a (A+3 C) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx+(b C) \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+b \cos (c+d x)}} \, dx \\ & = -\frac {2 \sqrt {a+b} C \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{d}+\frac {2 A \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {1}{3} (A b) \int \frac {1+\cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx+\frac {1}{3} (-A b+a (A+3 C)) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx \\ & = \frac {2 A (a-b) b \sqrt {a+b} \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^2 d}-\frac {2 \sqrt {a+b} (A b-a (A+3 C)) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a d}-\frac {2 \sqrt {a+b} C \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{d}+\frac {2 A \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)} \\ \end{align*}

Mathematica [A] (verified)

Time = 9.74 (sec) , antiderivative size = 315, normalized size of antiderivative = 0.80 \[ \int \frac {\sqrt {a+b \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=-\frac {2 \left (-\frac {A (a+b \cos (c+d x))^2 \sin (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)}+\sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right )} \left (A b (a+b) E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right ) \sqrt {\frac {(a+b \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-a (b (A-3 C)+a (A+3 C)) \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right ) \sqrt {\frac {(a+b \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-6 a b C \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right ) \sqrt {\frac {(a+b \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+A b (a+b \cos (c+d x)) \sqrt {\cos (c+d x) \sec ^2\left (\frac {1}{2} (c+d x)\right )} \tan \left (\frac {1}{2} (c+d x)\right )\right )\right )}{3 a d \sqrt {a+b \cos (c+d x)}} \]

[In]

Integrate[(Sqrt[a + b*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2))/Cos[c + d*x]^(5/2),x]

[Out]

(-2*(-((A*(a + b*Cos[c + d*x])^2*Sin[c + d*x])/Cos[c + d*x]^(3/2)) + Sqrt[Cos[(c + d*x)/2]^2]*(A*b*(a + b)*Ell
ipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[((a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] - a
*(b*(A - 3*C) + a*(A + 3*C))*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[((a + b*Cos[c + d*x])*
Sec[(c + d*x)/2]^2)/(a + b)] - 6*a*b*C*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[((a + b
*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] + A*b*(a + b*Cos[c + d*x])*Sqrt[Cos[c + d*x]*Sec[(c + d*x)/2]^2]*T
an[(c + d*x)/2])))/(3*a*d*Sqrt[a + b*Cos[c + d*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1361\) vs. \(2(360)=720\).

Time = 26.75 (sec) , antiderivative size = 1362, normalized size of antiderivative = 3.46

method result size
parts \(\text {Expression too large to display}\) \(1362\)
default \(\text {Expression too large to display}\) \(1816\)

[In]

int((A+C*cos(d*x+c)^2)*(a+cos(d*x+c)*b)^(1/2)/cos(d*x+c)^(5/2),x,method=_RETURNVERBOSE)

[Out]

2/3*A/d*(-(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF(cot(d*x+c)
-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*cos(d*x+c)^3-(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(
d*x+c))/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b*cos(d*x+c)^3+(cos(d*x+c)/(1+cos
(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(
1/2))*a*b*cos(d*x+c)^3+(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*Ellipti
cE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b^2*cos(d*x+c)^3-2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*
x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*cos(d*x+c)^2-2*E
llipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)
/(1+cos(d*x+c)))^(1/2)*a*b*cos(d*x+c)^2+2*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)
*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a*b*cos(d*x+c)^2+2*(cos(d*x+c)/(1+cos(d*x+c)
))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b
^2*cos(d*x+c)^2-(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF(cot(
d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*cos(d*x+c)-EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(
(a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a*b*cos(d*x+c)+EllipticE(cot(d*
x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c))
)^(1/2)*a*b*cos(d*x+c)+(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*Ellipti
cE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b^2*cos(d*x+c)+cos(d*x+c)^2*sin(d*x+c)*a*b+b^2*cos(d*x+c)^2*sin
(d*x+c)+a^2*cos(d*x+c)*sin(d*x+c)+2*a*b*cos(d*x+c)*sin(d*x+c)+a^2*sin(d*x+c))/(1+cos(d*x+c))/(a+cos(d*x+c)*b)^
(1/2)/cos(d*x+c)^(3/2)/a+2*C/d*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(-EllipticF(cot(d*x+c)-csc(d*x+c)
,(-(a-b)/(a+b))^(1/2))*a+EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b-2*b*EllipticPi(cot(d*x+c)-csc
(d*x+c),-1,(-(a-b)/(a+b))^(1/2)))/(a+cos(d*x+c)*b)^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1+cos(d*x+c))/cos(
d*x+c)^(1/2)

Fricas [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt {b \cos \left (d x + c\right ) + a}}{\cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((A+C*cos(d*x+c)^2)*(a+b*cos(d*x+c))^(1/2)/cos(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^2 + A)*sqrt(b*cos(d*x + c) + a)/cos(d*x + c)^(5/2), x)

Sympy [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {\left (A + C \cos ^{2}{\left (c + d x \right )}\right ) \sqrt {a + b \cos {\left (c + d x \right )}}}{\cos ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx \]

[In]

integrate((A+C*cos(d*x+c)**2)*(a+b*cos(d*x+c))**(1/2)/cos(d*x+c)**(5/2),x)

[Out]

Integral((A + C*cos(c + d*x)**2)*sqrt(a + b*cos(c + d*x))/cos(c + d*x)**(5/2), x)

Maxima [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt {b \cos \left (d x + c\right ) + a}}{\cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((A+C*cos(d*x+c)^2)*(a+b*cos(d*x+c))^(1/2)/cos(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)*sqrt(b*cos(d*x + c) + a)/cos(d*x + c)^(5/2), x)

Giac [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt {b \cos \left (d x + c\right ) + a}}{\cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((A+C*cos(d*x+c)^2)*(a+b*cos(d*x+c))^(1/2)/cos(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*sqrt(b*cos(d*x + c) + a)/cos(d*x + c)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,\sqrt {a+b\,\cos \left (c+d\,x\right )}}{{\cos \left (c+d\,x\right )}^{5/2}} \,d x \]

[In]

int(((A + C*cos(c + d*x)^2)*(a + b*cos(c + d*x))^(1/2))/cos(c + d*x)^(5/2),x)

[Out]

int(((A + C*cos(c + d*x)^2)*(a + b*cos(c + d*x))^(1/2))/cos(c + d*x)^(5/2), x)